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= What i1s Formal Verification?

= An aspect of software assurance
= Enables proving mathematical models of program execution

#[requires(x < i32::MAX)]
#[ensures(result == x + 1)]
fn add_1(x: i32) -> 132 {

= Testing = only checks for finite inputs x + 1
= FV - checks for all possible inputs! 1
- Why Rust? = My contribution & Case Study
= Ownership properties ensure memory safety at compile-time Verification ofthe Union-Find data
= Prevents bugs such as in the recent Crowdstrike incident structure found in e-graphs good
= Simplifies proof logic! O e "
= Functional programming paradigms present in Rust () ©
= Data is immutable by default = deterministic functions (1) (a) o)
= Code correctness is essential in critical systems! )
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“.Evaluation of Rust Verification tools

. P d with
Prusti - n M

Development entirely in VS Code Allow functionally pure
T —— Rust code to be used in
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External environments to debug proofs
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‘ Where should we focus future work - a969%%
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= My suggestion of today: = The ideal Rust verifier should have:
= Start writing proofs with Prusti = An ergonomic UX like Prusti
and “graduate” to Creusot = Seamless between writing code and proving code
= This is far from ideal. = Shows coordination between code and violated contracts
= Comprehensive documentation and examples
Therefore, for all Rust verification = Proving capabilities of Creusot
tools, there exists demonstrated = Ability to handle many datatypes in proof logic
need for improvement! = Extended to write logical models for custom types
Q.E.D. = Accessible intermediate verification lang for debugging

= Minimized friction during development
= Stable support for proof counterexamples
= Improved error handling
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