Formal Verification for Rust:
Where are we now?

Molly MacLaren
* Qe CASC
’0 0 John Sarracino, Matt Sottile

3+ CASC

0
0’ ‘ 0 Center for Applied
0

Scientific Computing

LLNL-PRES-867435

- 4 o
LaW_rence leermore This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore Na_tional Labora?ory Lnderc_ontract
Natlonal Laboratory DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

“ Formal Verification for Code O:,c')—@ﬁb

’,}’ Summen
Correctness and Safety CXSC SIS COMPUTING
|| Laerence Liverm

= What i1s Formal Verification?

= An aspect of software assurance
= Enables proving mathematical models of program execution

#[requires(x < i32::MAX)]
#[ensures(result == x + 1)]
fn add_1(x: i32) -> 132 {

= Testing = only checks for finite inputs x + 1
= FV - checks for all possible inputs! 1
- Why Rust? = My contribution & Case Study
= Ownership properties ensure memory safety at compile-time Verification ofthe Union-Find data
= Prevents bugs such as in the recent Crowdstrike incident structure found in e-graphs good
= Simplifies proof logic! O e "
= Functional programming paradigms present in Rust () ©
= Data is immutable by default = deterministic functions (1) (a) o)
= Code correctness is essential in critical systems!)

| M Lawrence Livermore

\/ o8
National Laboratory ‘ COMPUTING N Ammmm:‘z;?

National Nuc} jon

LLNL-PRES-867435

“.Evaluation of Rust Verification tools

. P d with
Prusti - n M

Development entirely in VS Code Allow functionally pure
T —— Rust code to be used in

File Edit Selection View Go Run Terminal Help

Model borrows of
ownership with a
“before” and “after”
state

Syntactic similarities

B Lawrence Livermore
LLQ National Laboratory COMPUTING

Creusot

Proved with ‘

Why3

¢
<

External environments to debug proofs

Mot Lof EGIeposl MieeToude Cowmeeandi

Int, Sequence,
Map, Set

al
(04
A\ L
VS o
National Nuclear Security Administration

LLNL-PRES-867435

f - . ANOA.
‘ Where should we focus future work - a969%%

“ Summen
IN Rust verification? L, A OMPUTI
CASC SCHOLL;;WL;;OGRAM
= My suggestion of today: = The ideal Rust verifier should have:
= Start writing proofs with Prusti = An ergonomic UX like Prusti
and “graduate” to Creusot = Seamless between writing code and proving code
= This is far from ideal. = Shows coordination between code and violated contracts
= Comprehensive documentation and examples
Therefore, for all Rust verification = Proving capabilities of Creusot
tools, there exists demonstrated = Ability to handle many datatypes in proof logic
need for improvement! = Extended to write logical models for custom types
Q.E.D. = Accessible intermediate verification lang for debugging

= Minimized friction during development
= Stable support for proof counterexamples
= Improved error handling

- al
M Lawrence Livermore N Ay ?‘."é
lear Security Administratic

National Laboratory COMPUTING Nattonsl N =

LLNL-PRES-867435

	Slide 1: Formal Verification for Rust: Where are we now?
	Slide 2
	Slide 3: Evaluation of Rust Verification tools
	Slide 4: Where should we focus future work in Rust verification?

