
LLNL-PRES-867435

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under c ontract 
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Formal Verification for Rust:
Where are we now?

Molly MacLaren
CASC

John Sarracino, Matt Sottile



LLNL-PRES-867435

▪ What is Formal Verification?
▪ An aspect of software assurance
▪ Enables proving mathematical models of program execution

▪ Testing → only checks for finite inputs
▪ FV → checks for all possible inputs!

Formal Verification for Code
Correctness and Safety

#[requires(preconditions)]
#[ensures(postconditions)]
fn add_1(x: i32) -> i32 { 
 x + 1 
}

#[ensures(result == x + 1)]
#[requires(x < i32::MAX)]

▪ Why Rust?
▪ Ownership properties ensure memory safety at compile-time

▪ Prevents bugs such as in the recent Crowdstrike incident
▪ Simplifies proof logic!

▪ Functional programming paradigms present in Rust
▪ Data is immutable by default → deterministic functions

▪ My contribution & Case Study

Verification of the Union-Find data 
structure found in e-graphs good

▪ Code correctness is essential in critical systems!



LLNL-PRES-867435

Evaluation of Rust Verification tools

Prusti Creusot∩
Allow functionally pure 

Rust code to be used in 

proofs

Model borrows of 
ownership with a 

“before” and “after” 

state

Syntactic similarities

Proved with
Viper

Proved with
Why3

Development entirely in VS Code External environments to debug proofs

Int, Sequence, 
Map, Set //TODO Int, Sequence, 

Map, Set



LLNL-PRES-867435

Where should we focus future work
in Rust verification?

▪ The ideal Rust verifier should have:

▪ An ergonomic UX like Prusti
▪ Seamless between writing code and proving code
▪ Shows coordination between code and violated contracts
▪ Comprehensive documentation and examples

▪ Proving capabilities of Creusot
▪ Ability to handle many datatypes in proof logic
▪ Extended to write logical models for custom types
▪ Accessible intermediate verification lang for debugging

▪ Minimized friction during development
▪ Stable support for proof counterexamples
▪ Improved error handling

▪ My suggestion of today:

Therefore, for all Rust verification 

tools, there exists demonstrated 

need for improvement!

Q.E.D.

▪ Start writing proofs with Prusti 
and “graduate” to Creusot

▪ This is far from ideal.


	Slide 1: Formal Verification for Rust: Where are we now?
	Slide 2
	Slide 3: Evaluation of Rust Verification tools
	Slide 4: Where should we focus future work in Rust verification?

