
What We Can Learn From 
Your Mistakes: A Study of 

Rust Errors
Molly MacLaren, Ruochen Wang, Michael Coblenz



New to Rust



Ownership Rules
Ownership: Every variable must have exactly ONE owner at a time.
• References are valid for a scope or lifetime determined by the 

compiler
• Ownership can be temporarily leased through borrowing



Motivation
• Understanding concepts of ownership may be difficult for those 

coming from other languages that manage memory differently.
• Rust has great error messages but mediocre tools?

Fulton, K. R., Chan, A., Votipka, D., Hicks, M., & Mazurek, M. L. (2021). Benefits and drawbacks of adopting a secure programming language: 
Rust as a case study. In Seventeenth Symposium on Usable Privacy and Security (SOUPS 2021) (pp. 597-616).



Rust Error Visualizer (REVIS)

Designed by Ruochen Wang, REVIS is a VSCode extension that 
generates diagrams representing lifetime and ownership errors using 
diagnostic data.
A study was conducted over Spring 2023 in CSE 131/231, a course on 
compiler construction.

Prior Work



Research Questions
In order to design and improve Rust debugging tools, we need to know 
which errors are highest priority:
• What are the most frequent errors Rust users make and which 

errors take the longest to resolve?
We also need to evaluate tool effectiveness:
• Do error resolution tools such as REVIS reduce time spent fixing 

errors?
• Can we track individuals’ learning progress through resolution 

times?



Analysis by Resolution Session

After rebuilding every code snapshot and logging errors, the time-
to-repair errors was determined by:
• Resolution Session: A series of consecutive builds containing a 

particular error.
• Active Resolution Cost (ARC): Sum of the time between each 

build divided by the number of errors present in each build.

Mesbah, A., Rice, A., Johnston, E., Glorioso, N., & Aftandilian, E. (2019, August). Deepdelta: learning to repair compilation 
errors. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on 
the Foundations of Software Engineering (pp. 925-936).



Resolution Session Example

Error 1

Error 2 Error 2

Error 1

Resolution Session for Error 2

1 Resolved

2 Resolved

n0 = 1 n1 = 2

T1 T2

Error 2 Active Resolution Cost = 
!!
"!
+ !"

""

n2 = 1 n3 = 0



Variable used after 
value moved

Value dropped while 
still borrowed

Type does not 
implement trait

Type mismatch Unresolved nameBorrowing Errors



Error Messages 
(n = 10957)

Stats Across 6 Participants

REVIS Diagram 
Support, 51

Other, 
10906

REVIS 
Diagram 
Support, 

27

Other, 
1889

Resolution Sessions (n = 1916)



Limitations
• Hard to gauge efficiency of tool
• Most data came from those who didn’t use REVIS!

• Error reproduction may be inaccurate
• Study took place halfway through the quarter



Takeaways
• Ownership errors took longer to resolve on average compared to 

other errors
• Common errors in Rust are also common in other languages
• Future tools could be replicated for other PLs

• There are other common ownership-related errors that REVIS should 
support



Next Steps
• We want our error resolution tools to be used in a more general 

context than a grad-level compilers course.
• How can we gain a greater understanding of the errors Rust users face 

in more diverse experience levels and programming contexts



Minimally Invasive Data
All you need to analyze error resolution times is:
• Error code
• Unique error message identifier
• Time difference



Work in Progress

• Combined tool and telemetry!
• Error logs sent directly to server for analysis
• Users of the extension will be able to opt-in to our study
• Currently working on Institutional Review Board (IRB) 

paperwork for study approval



Community Impact
Iterative analysis will allow the user to track their progress over time:
• Will they become quicker at fixing the same types of errors?
• Or will they encounter more difficult instances of the same error 

code?

Your resolution cost over time for E0382



Future Analysis
As developers gain more experience:
• Are there any errors that become more difficult to solve?
• Which errors show up more frequently over time?

Focusing on these errors would help us develop tools that would assist 
seasoned developers, not just newcomers.



Concluding Remarks
• Error analysis can help us build tools beyond just ownership and Rust
• Better tooling would help flatten the learning curve and encourage 

adoption better coding practices!



Thank you!
• Ruochen Wang, Michael Coblenz, and the Kale lab
• Mai Elsherief and Christine Alvarado
• The ERSP summer cohort!



Questions?


