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ANONYMOUS AUTHOR(S)∗

In the Rust programming language, functional-style code is considered idiomatic, but is idiomatic always
best? We recruited participants to review code written with functional and imperative approaches, analyzing
participants’ ability to find bugs and the time required for review. We also analyzed open-source code to
understand how usage of techniques from each paradigm compare across different contexts. Imperative
styles generally required participants less time to review, but mutation significantly increased review times.
Functional styles such as iterator methods and higher order functions are more prevalent in contexts where
correctness is highly important, but function-level immutability is not as necessary to maintain.
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1 INTRODUCTION
Writing clear and well-structured code is fundamental to building software that is reliable, maintain-
able, and extendable over time [3]. Improved code clarity in software engineering helps minimize
bugs, simplify modification, and support effective collaboration [5]. To maximize code quality and
clarity, developers are often encouraged to follow a programming language’s idioms—the commonly
used code patterns and practices [36, 45]. However, it is not clear how programming language
designers should choose which idioms to recommend or whether those idioms are consistently the
most understandable and maintainable programming style.

The question of idioms is particularly important in multi-paradigm languages, where program-
mers must choose which paradigm to use for each section of code. Rust, for example, supports
both functional and imperative styles. Rust is a constantly evolving language that has been voted
by programmers as the “most admired” since 2016 [38], making analysis of this question relevant,
important, and timely. New results could be adopted by the Rust community, resulting in codebases
that are easier to read and maintain. The topic is particularly relevant for Rust, which may be
harder to understand than other languages [16] and for which other researchers have studied type
system-related comprehension questions [9]. We seek to develop and apply methods that would
provide evidence regarding which choices would improve readability of Rust code.
Often, readability studies assess readability by asking participants questions about specific

aspects of behavior, such as program output or memory management, by asking participants
to fill in blanks or answer closed-ended questions [13, 27, 37, 42]. We are interested in a more
holistic approach that encourages participants to understand all important aspects of the code.
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To encourage our participants to analyze code thoroughly and in a realistic manner, we ask them
to review code snippets. This reflects modern peer code review practice, which is a widespread
practice in industrial software engineering; reviewers check both for bugs and for opportunities for
stylistic or design improvement to code [1]. Compared to well-written code, confusing code should
take longer to review (because it is harder to understand) and produce more critical comments
from reviewers, who would suggest ways of making the code easier to read. Code review quality
and cost have become even more important with the rapid adoption of LLM-based code generation,
since LLM-generated code may be incorrect or otherwise unfit for use as is [25].
To gather data regarding readability and usability of each paradigm in Rust, we recruit Rust

programmers to complete code reviews to look for bugs and refactoring opportunities in provided
code snippets. Then, we analyze the time required to complete the reviews and studied the quality
and content of the reviews. We prepare functional- and imperative-style versions of each code
snippet and randomize which version of each snippet participants see so that each participant sees
only one style or the other for a given snippet.

To understand how programmers use functional and imperative language features, we analyze a
total of 15M functions to detect these features among open-source codebases. To observe expert
use cases from large, popular Rust codebases, we analyze 939 programs from Awesome Rust, a list
of commendable software written in Rust, curated by the Rust community [35]. Additionally, we
analyze single-developer codebases to compare language feature use with larger codebases.

In this study, we address the following research questions:

RQ1: How do functional and imperative Rust compare in comprehension tasks? We
hypothesize that functional-style Rust will make it easier to find bugs during code review.

RQ2: In which contexts is an imperative style more commonly used than a functional
style, and vice versa?We hypothesize that functional-style code will be more prevalent in
domains where correctness is highly critical.

Overall, we found that imperative styles were generally more readable. Iteration resulted in
significantly shorter code review times than functional approaches, reducing the times by 22%.
Mutation had a statistically significant impact on review times, increasing the times by 87%.
match statements were faster to review on average than if/else trees, but the difference was
not statistically significant. Higher-order functions and closures were slower to review than the
imperative alternative on average, but the difference was not statistically significant. Participants’
opinions, as expressed in their reviews, corresponded with design choices that would minimize
review time in the case of match, but recommended the opposite regarding functional-style iterators
and closures for performance and idiomatic reasons.
By analyzing large open-source codebases, we found three correctness-essential domains that

contain significantly more use of iterator methods and higher order functions than others. For
smaller single-developer codebases, we found that the large team-based codebases on average
also contained a higher concentration of iterator methods, however, the solo codebases contain a
significantly higher fraction of non-mutating functions. These results suggest that different contexts
of Rust programs make use of individual functional language features at different frequencies,
depending on the relative requirements for correctness and efficiency.

2 METHOD
Our study comprised (1) two Qualtrics-based code review quizzes to compare how programmers
understand and critique functional vs. imperative Rust code, and (2) usage analysis of paradigms in
public codebases. We incentivized participation with entry in a raffle for a $50 gift card.
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2.1 Functional vs. Imperative Rust
The official Rust Programming Language textbook defines iterators, closures, and pattern matching
as functional language features [24]. Additionally, Rust’s immutable by default model leverages
guarantees of immutability, an important pillar of pure functional programming [19]. Based on
prior work on functional programming [20], we identified five signals that we used to distinguish
imperative from functional programming in Rust: loops vs. iterator methods; mutating vs. non-
mutating functions; pattern matching; and use of closures and higher-order functions.

Loops vs. Iterator Methods. Imperative Rust relies more heavily on explicit loops that involve
mutation, whether they are written as for, while, or loop. Functional Rust, on the other hand,
uses iterator methods to enable sequences of calls such as map, filter, fold, and collect. We
analyze usage on a basis of whether a given function contains a loop, chain of iterator methods, or
both. Other multi-paradigm languages such as JavaScript offer fewer iterator methods—JavaScript
provides 11 static instance methods compared to Rust’s 76. [28, 33].

Closures and Higher Order Functions. Rust’s closures are first-class functions that implement one
or more of the traits Fn, FnMut, and FnOnce. Closures can be passed into higher order functions to
parameterize behavior, making code more modular and flexible. This enables concise and expressive
patterns of computation that are common in functional languages. In contrast, the imperative style
typically relies on instruction-driven logic and lacks first-class treatment of functions. Therefore,
functional-style Rust will contain more functions that either take as a parameter or return closures.

Mutation. We identify mutating functions as those that mutate the state of data outside of their
scope by receiving mutable references (&mut) as parameters. We also included functions that use
the unsafe keyword because this enables code that dereferences raw pointers or otherwise escapes
the safe semantics of Rust. In contrast, we consider functions with immutable inputs and outputs
to be functional-style. Any effects of mutating local variables are encapsulated inside functions,
so we do not consider this to affect whether a function is functional. While we consider mutating
functions in our paradigm analysis, we consider local mutation of structs in our code review quiz.

Pattern Matching. Rust’s pattern matching via match and if let enables expressive branch-
ing over values and algebraic data types, aligning with functional paradigms. In contrast, it is
more common in imperative languages (which often lack pattern matching) to see more condi-
tional branching. Although conditional branching is ubiquitous across functional and imperative
programming, ideally functional code will make use of match statements whenever possible.

2.2 Code ReviewQuizzes
2.2.1 Quiz Structure. Each quiz consists of code snippets written with two paradigms of Rust
programming: functional and imperative. Each question presents one snippet alongside a description
of its intended behavior. We ask participants to review the code for potential improvements and
bugs, and identify them in a provided input box. The instructions we provide are shown in Fig. 1.
The questions are randomly assigned, presenting a given code snippet in either functional or

imperative form, and the order of questions is randomized to minimize any impact of question order.
A hidden timer is embedded in each question to measure how long participants took to complete
each question. Although we have no way to ensure that participants are completely focused on
the tasks, any distractions are likely similar across experimental conditions, especially since each
participant experiences both conditions across multiple questions.
We identify questions that deal with Iteration as I𝑛, questions with Pattern matching as P𝑛,

Mutation as M𝑛, and higher order functions containing Closures as C𝑛.
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        }
        if !seen.contains(&num) {
           seen.insert(num);
        }
    }
    false
}

Review the code given, looking for any improvements that should be made before integrating this code
into a large, stable codebase. Be sure to identify any opportunities for improving clarity, and if you find
any bugs, mention those too.

Write your review in the text box below, explaining what changes you recommend making and why, along
with their corresponding line numbers. You can also write high-level comments about the entire change.
See the example below:

Line 1: [code review]

Line 2-5: [code review]

Overall: [comments]

If you believe no changes are necessary, be explicit by writing "LGTM" ("looks good to me").

Fig. 1. Code review instructions

2.2.2 Quiz 1 Content. The first Qualtrics quiz contains ten review questions, each with two versions
(functional and imperative), with the exception of P2, which has two functional variants. In this
quiz, we evaluate three hypotheses:

H1: Imperative loops (such as for and while) are more readable than functional approaches
(map, fold).

H2: Match is more readable than if for cases with more than two branches.
H3: Mutation impedes readability relative to immutable designs.

(a) Question I1: Functional version

1 fn product_even_squares(numbers: &[i32]) ->

i32 {↩→

2 numbers.iter()

3 .filter(|&&num| num % 2 == 0)

4 .map(|&num| num * num)

5 .fold(0, |acc, x| acc * x)

6 }

(b) Question I1: Imperative version

1 fn product_even_squares(numbers: &[i32]) ->

i32 {↩→

2 let mut product = 0;

3 for &num in numbers {

4 if num % 2 == 0 {

5 product *= num * num;

6 }

7 }

8 product

9 }

Fig. 2. Question I1 showed code that was intended to calculate the product of squares of all even numbers in
a list. The functional implementation used map, filter, and fold; the imperative implementation used a for
loop. Both versions included a bug: the accumulator is initialized at zero rather than one.

2.2.3 Quiz 2 Content. Inspired by trends observed in the first quiz (such as iter/loop questions
having shorter task completion times in the imperative paradigm vs. the functional paradigm)
and interested in exploring certain findings (such as a preference for pattern matching over if-else
branching, and for loop logic over iterator methods) in greater depth, we develop a second set of
code review questions for a follow-up quiz.
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Q Code Description Bug

I1 This function is intended to calculate the product
of squares of all even numbers in a list.

The initial value of the product is 0
instead of 1.

I2 This function is intended to determine if a list
contains any pair of elements that sum to a target.

There is a redundant if.

I3 This function is intended to print out a grid of
random numbers.

Because we are starting the index at
the current index of the outer loop
rather than 0, we print a triangle in-
stead of a grid.

I4 This function is intended to compute the Cartesian
product of two lists (in other words, it returns all
possible ordered pairs from two or more sets). For
example, if A={1, 2} and B={x, y}, the Cartesian
product A×B={(1, x), (1, y), (2, x), (2, y)}.

No bug.

I5 This function is intended to find the last occur-
rence of a specific error message in a log, in the
form of the furthest right index where the error
message is present, based on its timestamp and
content.

No bug.

I6 This function is intended to print out a grid of 0s
with diagonal 1s.

Actual output is a grid of 1s with diag-
onal 0s.

P1 This function is intended to match integer power
levels to the PowerMode enum shown below.

We are missing the “Normal” variant
condition check.

P2 This function is intended to assign grades to stu-
dents based on their exam scores.

No bug.

M1 The following snippet defines a User struct and
instantiates an example User.

In the function generating an example
username and email, the username and
email of one of the users is swapped.

M2 The following snippet defines a Circle struct and
instantiates an example Circle.

No bug.

Table 1. Survey 1 questions

The format of the questions for the second quiz are identical to those of the first; we again have
a timer, functional and imperative versions, code blocks, and free response code review boxes. This
quiz is shorter than the first; where the first quiz has 10 questions, our second has six.

We evaluate three hypotheses:
H4: Pattern matching is more readable than if/else trees for complex algebraic data types.
H5: Closures and higher-order functions impede readability.
H6: Loops are more readable than iterators in cases where the loop needs to terminate early.

2.2.4 Analytical Method.

Quantitative Analysis. For our primary quantitative measurement, we collect the time taken
to complete each question. Since the timer is hidden from participants, they are unaware of this
measurement, preventing them from modifying their behavior based on time constraints. Because
times are often not normally distributed, we use the Mann-Whitney U test to assess the timing
differences between the paradigms of each question.
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Q Code Description Bug

P3 The following snippet takes in a reference to a
Point, shown below. If the point is on the x-axis,
increase its y-value by one and return a new point.
Otherwise, return none.

This code checks whether x is zero, not
if it’s on the x-axis (it should be check-
ing if y==0).

C1 The following snippet creates a new vector that
filters for numbers that are strictly above a given
threshold.

We should only return values strictly
greater than the threshold, but the code
uses greater than or equal to instead.

C2 The following snippet implements a running av-
erage and passes the test case.

There is a cast after division that will
drop the decimal part of our average.

I7 The following snippet takes a vector of strings and
parses them into a vector of i32s, returning an
error on the first failure to parse.

No bug.

I8 The following snippet returns the first two perfect
squares.

No bug.

P4 The following snippet implements Display for
HttpResponse.

No bug.

Table 2. Quiz 2 questions

Qualitative Analysis. Our qualitative data consists of participants’ written code reviews where
they provide feedback on the given Rust code snippets. These code reviews are free-text responses,
which we manually analyze for the participants’ correctness, thought processes, and engagement
with different programming paradigms.

To analyze these written code reviews, we employ thematic analysis [4], a method widely used
in qualitative research that focuses on identifying and analyzing patterns within data.

2.3 Recruitment
For recruitment, we reach out through “This Week in Rust," a popular newsletter catered for Rust
programmers and the r/learnrust Reddit page, catered for beginners. We also ask a well-known
Rust programmer to publicize our study via the Bluesky social network.

We follow the same channels for recruitment for the second quiz, sending followup emails to the
people who provided their emails in the first quiz. Additionally, we advertise our study through the
Rust Programming Language Community Discord server.

2.4 Paradigm Use Analysis
2.4.1 Analysis Tool Design. This work is part of the development of Situationally Adaptive Lan-
guage Tutor (salt), a VS Code [26] IDE extension to perform longitudinal programming studies. In
order to interpret Rust code, salt calls a Rust compiler plugin built on top of rustc-plugin [6],
based on the implementation of Flowistry, another Rust IDE tool [10]. When executed on a program
at compile time with cargo, it takes inferences from the program’s intermediate representations,
both high-level and mid-level (HIR and MIR), to identify functional and imperative language fea-
tures. These include locations of features within functions, types of iterator methods, and input and
output types of functions. While the salt plugin can be executed within the VS Code extension to
monitor code changes, it can also be run independently to analyze any compilable Rust projects.

2.4.2 Analysis Method. To understand how paradigm usage is reflected in real-world Rust programs,
we use the salt plugin to analyze different kinds of open-source repositories:
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Large, Popular Rust Codebases. To acquire code that reflects high standards for Rust programming,
we based our selection on projects in Awesome Rust, a curated list of commendable Rust frameworks,
libraries, and software grouped by application context [35]. We analyze 939 codebases across Gitlab,
Github and Crates.io that successfully compile with cargo using the salt plugin.
Using the context provided by Awesome Rust, we organize them into 11 broader contextual

domains. For example, cryptography and authentication libraries fall under Security while cloud
and email fall under Networking. From there, we identify three domains that pertain to computing
infrastructure—Development Tools, Language Design, and Systems—based on their necessity for
correctness to support other computing domains [17]. Based on the arguments that functional
programming promotes correctness [7] and that those who value correctness will take steps to
promote it, we hypothesize that these domains will make heavier use of functional language features
than others.

Solo-developer Rust Projects. We also consider single-developer (or “solo”) projects to compare
paradigm use. In this context, code review and code quality are likely less of a focus to maintain
correctness and readability by collaborators. We analyzed 312 recent solo projects, updated as of
September 1, 2025 which contain a majority of Rust code and are at least one year old. In these
codebases, we hypothesize that they will contain less functional language features on average
compared to the average of the large, popular codebases.

3 RESULTS
3.1 RQ1: Functional and Imperative Readability
3.1.1 Quiz 1 Results.

Demographics. 241 participants started our quiz and 39 participants fully complete it. Our partici-
pants have an average of 13 years of programming experience and 85% have a college degree. They
have a median of three years of Rust experience, and every participant who completed the quiz
has written at least 100 lines of Rust before. Over half of our participants have some experience in
functional languages, but 77% of participants who have used a functional language such as Haskell
report they are only at a “Novice" level. The vast majority of our participants (84%) are in industry.

Quantitative Results. Figure 3 shows the distribution of code review times. Before analysis, we
remove results that were beyond two standard deviations from the mean to ensure that we do not
include outliers in our data, as those participants likely did not complete the study in a focused way.
On average, we find that functional tasks take 210 seconds to complete (a median of 176 seconds)
and imperative tasks take 203 seconds to complete (median of 170 seconds). Details of the time
distributions by paradigm for each task are shown in Figure 3.

To compare completion times between the functional and imperative paradigms across all tasks,
we fit a linear mixed model with task as a random effect to account for baseline differences in task
difficulty. The difference was not statistically significant (𝑝 = 0.814), indicating that the paradigm
does not affect the time required for code reviews across all questions put together.
Although there is no significant difference overall, this could be because either paradigm may

perform better within different language features. Therefore, we also test separately for each
hypothesis. Questions I1-I6 explore differences between iteration and loops, Questions P1 and P2
examine if statements vs. match structures, and Questions M1 and M2 explore aspects of mutation.
H1. For questions about iteration (I1-I6), we fit a linear mixed model. The average time to

complete the functional paradigm is 266 seconds, and on average, imperative tasks take 59.9
seconds less than functional tasks, which is statistically significant (𝑝 = 0.009). Thus, for iteration
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questions, the imperative paradigm leads to significantly shorter task completion times. The effect
size (Cohen’s d) is 0.338, indicating a small to medium effect size.

For if/else vs. match (P1-P2) and mutation (M1-M2), we use ordinary linear regression instead
of a linear mixed model due to the small task size, since there are only two questions each for these
two hypotheses [39].
H2. For if statements vs. match structures (P1-P2), tasks take 134 seconds on average for the

functional paradigm, with the imperative paradigm being about 31.6 seconds slower on average.
However, this effect is not statistically significant (p=0.346), so we cannot conclude that there is a
difference in time between the two paradigms.
H3. For mutation (M1-M2), the functional paradigm takes an average of 121 seconds, and the

imperative paradigm is on average 105 seconds slower. The p-value of 0.01 indicates this result is
statistically significant, suggesting that the imperative paradigm is slower to interpret compared to
the functional paradigm. The effect size (Cohen’s d) is 0.602, indicating a medium effect size.
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Fig. 3. Average code review times, separated by hypothesis

Bug identification. Figure 4 summarizes the percentage of participants who successfully identify
bugs for each condition, split into four response categories: “Yes" (the participant identifies the bug
correctly), “No" (the participant doesn’t identify the bug), “Partially" (the participant finds either
part of the bug or mentions a consequence of the bug that was not the bug itself), and “Identified
Other Bug" (the participant finds a bug or improvement we did not intend for them to focus on).
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Table 3. Qualitative results of the first quiz

Theme Questions mentioned in % of reviews
mentioning

Dislike of fold I1 Functional, I2 Functional 41%
Iterator methods preferred over loops I1 Imperative 59%
Loops preferred over iterator methods I3 Functional, I6 Functional 45%
Simplifying iterators I4 Functional 47%
Functional code preferred I4 Imperative, I5 Imperative 40%
Pattern matching preferred over if-else P1 Functional, P1 Imperative 61%
Use builder patterns M1 Functional 39%
Avoid mutation in design patterns M2 Imperative 32%

To investigate whether the condition affects participants’ success in finding bugs, we perform
hypothesis tests using Fisher’s Exact Test. The results of the test reveal no significant associations
between the functional & imperative conditions and the likelihood of correctly identifying bugs, as
indicated by the p-values > 0.05 for all comparisons.

Qualitative Results. We conducted thematic analysis [4] by coding the reviews of our 39 partici-
pants and identifying recurring themes. Details about reviews are shown in Table 3.
Theme 1: Preference for Loop Logic Over Iterator MethodsMany participants (6/17 for I2,
9/16 for I3, 9/19 for I4) express a clear preference for imperative loop constructs (i.e. for loops)
over functional iterator methods such as map, filter, and fold. Participants often find looping
logic to be more readable, especially in nested or multi-step computations. In contrast, participants
in the functional condition (9/19 for I4) mention that iterators were unnecessarily complex and
harder to follow for some tasks, specifically those involved in questions like generating grids or
performing simple transformations.
Theme 2: Preference for Pattern Matching over If-Else Branching Participants favor Rust’s
match syntax over multiple if/else branches, since it is more idiomatic, concise, and expressive.
Several comments note that match statements reduce the likelihood of missed cases and improve
code maintainability.
Theme 3: Preference for Functional Design Patterns Over Mutable State Participants prefer
to avoid storing values that could be derived from existing fields. They also suggest using enums or
structured types to enforce constraints at compile time and avoid parsing or validation at runtime.

3.1.2 Quiz 2 Results.

Demographics. 39 participants (and four pilots) fully completed our second quiz. Our participants
have an average of 12 years of programming experience and 64% have a college degree. Our
participants have a median of four years of Rust experience, and every participant who completed
the quiz has written at least 100 lines of Rust before. 73% of our participants are from industry.

Quantitative Results. Figure 5 shows the distribution of code review times for functional and
imperative questions. We perform the same outlier removal as for quiz 1. On average, functional
tasks take on average 239 seconds to complete (median of 317 seconds) and imperative tasks take
on average 266 seconds to complete (median of 345 seconds). Details of the time distributions by
paradigm for each task are shown in Figure 6.
We fit a linear mixed model with task as a random effect across the six tasks. On average,

participants take 29 seconds longer to complete imperative tasks than functional ones, but this

, Vol. 1, No. 1, Article . Publication date: September 2026.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

0 200 400 600 800 1000
Time (seconds)

Functional

Imperative

Pa
ra

di
gm

Fig. 5. Code review times by paradigm

P3 P4 C1 C2 I7 I8
Task

0

200

400

600

800

1000

Ti
m

e 
(s

ec
on

ds
)

If vs Match Closures & Higher Order Funcs Iter/Loop

Paradigm
functional
imperative

Fig. 6. Code review times by task

difference is not statistically significant (𝑝 = 0.375). To determine if there are any hypothesis-level
differences, we test questions about if/else vs. match (P3, P4), closures and higher order functions
(C1, C2), and iter methods vs. loops (I7, I8) separately using linear regression.

H4. For if/else vs match, the average time for the functional paradigm is 259 seconds, and the
imperative paradigm is on average 66 seconds slower. The difference is not significant (𝑝 = 0.254).
H5. The functional approach (closures and higher order functions) average 177 seconds; the

imperative paradigm is 46.9 seconds slower. The difference is not significant (𝑝 = 0.424).
H6. For iterators vs. loops, the functional paradigm takes 210 seconds on average, while the

imperative 15.7 seconds slower. The difference is not significant (𝑝 = 0.807).
Bug identification. Figure 7 summarizes the percentage of participants who successfully

identified bugs for each condition, split into two response categories: “Yes" (the participant identifies
a bug correctly), “No" (the participant does not identify the bug).

After grouping questions across hypotheses across both quizzes, we perform Fisher’s Exact Test
to determine if the condition affects participants in finding bugs for each hypothesis. The groupings
are as follows:

• Iter/loop: I1, I2, I3, I4, I5, I6, I7, I8
• If vs. match: P1, P2, P3, P4
• Mutation: M1, M2
• Closures and higher order functions: C1, C2

The results of the test reveal that only the mutation group is likely to have an association between
the functional and imperative conditions and the likelihood of correctly identifying bugs, with a
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p-value of 0.048. However, it may be appropriate to interpret this result as not significant due to the
need for a Bonferroni correction for multiple comparisons.

Qualitative Results. For questions with multiple sets of comments, we take the union of the codes
of both reviewers. Table 4 shows details for the qualitative results discussed.
Theme 1: Preference for functional code Participants in both the imperative and functional
versions of C1 mention preferring to use the functional iter-filter-collect chain (despite that the
language feature we intended testing was a higher order function), arguing that this is less verbose
and more idiomatic. This preference is also reflected in responses to the imperative version of I7,
where participants express a desire for the code to be written more functionally using iterators.
Theme 2: Preference for iterators Many participants note a preference for iterators to avoid
unnecessary allocations. Participants in the imperative version of I7 note that the code should
be written more functionally with iterators to make the code more efficient. Participants in both
functional and imperative versions of I8 also preferred iterators, noting this would be more flexible,
concise, and readable.
Theme 3: Preference for closures In the functional version of C2, some participants find the
use of a closure to maintain internal state unconventional, suggesting that using a struct would be
more appropriate and idiomatic for Rust.
Theme 4: Preference for patternmatching In the imperative version of P4, nearly all participants
recommend replacing the existing if-else logic with a match expression. Participants note this
could reduce repetitive code, improve maintainability, and be more idiomatic.

3.2 RQ2: Functional and Imperative Paradigm Use
To understand how imperative and functional programming is used in large, popular codebases,
we analyze repositories listed in Awesome Rust. From 1240 cloned popular Rust codebases, we
compile 985 without errors with cargo. We remove 43 outliers with less than 25 lines of valid
Rust code (excluding vertical whitespace and comments) leaving 939 codebases with an average
of 22,968 lines each. Each analysis is normalized by codebase such that large-scale projects do
not disproportionately influence the results. All together, the data encompasses 1,486,333 unique
functions with an average of 1583 functions per codebase (𝜎 = 4677).
We define the following domains from the contexts provided by Awesome Rust: AI/ML, Data

Analysis, Graphics/Gaming, Media, Networking, Security Utilities, Web/Mobile, Dev Tools, Lan-
guage Design, and Systems. The last three—Dev Tools, Language Design, and Systems—represent
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Table 4. Qualitative results of the second quiz

Theme Questions mentioned in % of reviews

Functional code preferred C1 Functional, C1 Imperative, I7 Im-
perative

75%

Imperative code preferred I7 Functional 15%
Structs preferred over closures C2 Functional 26%
More modular code for readability C2 Imperative 29%
More code tests required C2 Functional, C2 Imperative 40%
Iterators preferred I8 Functional, I8 Imperative 41%
Match preferred over if-else P4 Imperative 95%

computing infrastructure domains, which are contexts where correctness is especially critical, since
they must maintain correctness across a broad range of conditions to support the function and
development of the other domains. These are represented by 331 repositories, while the other
domains are represented by 608 repositories in total.
In the following experiments, we test our hypothesis that computing infrastructure domains

contain higher concentrations of functional language features. While we are able to confirm that
these domains use iterator methods and higher order functions more often than other contexts, we
find no difference in the frequency of non-mutation functions or pattern matching.

3.2.1 Loops vs. Iterator Methods. To compare the use of functional and imperative approaches
to performing iteration, we analyze 44,039 functions containing only iterator methods, 78,398
functions containing only loops, and 19,547 functions containing both. We examine the fraction of
functions that contain only iterator methods of all functions that use iterator methods or loops.

The top three computing infrastructure domains correspond to the top three domains for highest
concentration of pure iterator method use, as seen in Figure 8. On average, they contain 37.03%
functions with purely iterator methods, while the other domains contain 29.71%, resulting in a
difference of 7.32%. We found that the results are statistically significant using a t-test (𝑝 = 0.018),
indicating that computing infrastructure domains lean towards functional-style in this aspect,
writing a higher concentration of functions that purely use iterator methods for iteration than
other domains with an effect size of 1.96 (Cohen’s d). However, since this is an observational study,
we cannot be sure of the cause of this difference.

As for the types of iterator methods used, all 11 of JavaScript’s semantically similar iterator
methods appear in the top 20 most commonly used Rust iterator methods overall when normalized
by codebase. The top two most common Rust iterator methods, collect and map, have similar
functionality to JavaScript’s toArray and map respectively. The top four appear in over half of all
codebases: collect (75.9%), map (73.9%), next (64.3%), and enumerate (53.7%).

3.2.2 Closures and Higher Order Functions. We identify higher order functions as ones that take a
closure as a parameter or return a closure. Across 1.4M functions, we only found 12,217 higher
order functions—only 0.82% of functions overall. However, computing infrastructure domains write
higher order functions at a concentration of 2.13%, almost three times the concentration of other
domains averaging at 0.76%. We found statistically significant results with a t-test (𝑝 = 0.0024) and
effect size of 2.82, supporting the claim that computing infrastructure domains write higher order
functions at a much higher rate than others. In Figure 8, we observe that Language Design contains
more higher order functions on average at 3.00%.
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Fig. 8. Concentrations of functions that use only iterator methods and of higher order functions. Language
Design, Dev Tools, and Systems domains rank in the top three of both. Error bars show standard error.

3.2.3 Mutating vs. Non-mutating Functions. Analyzing mutability and immutability at the function
level, we look at signals in the function type to determine whether a function allows for mutation
outside its scope. A function can mutate data if it is declared as unsafe or any of the parameters
or return value contain a mutable reference or value. Analyzing 1.4M total functions, we detect
534,850 mutating functions and 951,483 remaining non-mutating functions. Figure 9 summarizes
mutating vs. non-mutating function usage by software domain.

Only 67.8% of functions in these domains are non-mutating compared to 69.1% in other domains,
a difference that is not significant (𝑝 = 0.49). Additionally, codebases in the Language Design
domain contain the smallest percentage of non-mutating functions (63.0%).

3.2.4 Pattern Matching. We measure pattern matching use by detecting functions that contain
match statements and if let expressions. Overall, we detect 340,191 functions using pattern
matching out of 1.4M functions, including 299,483 match statements and 77,243 if let expressions.
The difference between the two groups is not statistically significant (𝑝 = 0.74), with comput-
ing infrastructure domains consisting of 26.4% pattern matching functions and the remaining at
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Fig. 9. Usage of non-mutating functions and functions containing pattern matching by domain. Error bars
represent standard error of the mean.

25.6%, suggesting that pattern matching is used relatively frequently regardless of the correctness-
criticality of context. Dev Tools uses the highest rate of pattern matching at 30.0%. Figure 9
summarizes pattern matching usage by software domain.

3.2.5 Paradigm Use in Solo Projects. The way individuals choose which paradigm to use in their
solo projects can show how the average Rust programmer makes design decisions in their own
work (where the stakes of correctness and readability might not be as high) compared to large
teams working on large, widely used codebases. From 618 cloned solo codebases from Github, we
successfully compile 939 from 298 users with cargo (A 50.6% success rate compared to Awesome
Rust’s 79.4%). The most recent commits of these codebases together consist of only 110,438 functions
with an average of 359 functions per repository with high standard deviation (𝜎 = 762). These
results are not surprising, as solo projects are likely to be much smaller than popular codebases,
with less emphasis on ensuring the project is rebuildable with just a cargo compile.

For popular codebases, functions containing iterator methods without any explicit loop state-
ments appear in 31.0% of functions performing iteration. In the solo codebases, we identify an
average concentration of only 21.9%, more than nine percentage points below the concentration
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in popular codebases. A t-test found a significant difference (𝑝 = 0.0033). This result again sug-
gests that correctness-critical contexts use iterator methods on their own more frequently than
other contexts. Meanwhile, we found that solo codebases use a significantly higher amount of
non-mutating functions at 72.1% compared to popular codebases’ 64.0% average (𝑝 = 0.000026).
The solo average is higher than that of the most non-mutating domain we identified, Security, at
71.5%. For higher order functions and pattern matching, we do not find statistically significant
results, but their relative percentages can be found in Fig. 10.

4 DISCUSSION
Our results suggest that whether functional or imperative code is “better” in Rust is highly context
dependent. While Rust design pattern guides indicate that functional Rust is the idiomatic way [34],
the readability and use varies by language feature and context of use.

Task-specific differences. The performance differences between paradigms were not uniform
across tasks. For iteration-related questions (I1-I6), imperative loops led to significantly shorter
completion times, suggesting that participants found loop-based reasoning more straightforward
when identifying bugs. Despite this, Fig. 3 shows that the functional version of I6 (printing out a
grid of 0s with diagonal 1s using for_each()) was completed slightly faster than the imperative
version (using for. . .in. . . ). However, for mutation-related questions (M1-M2), functional solutions
led to faster completion, and for if vs. match (P1-P2), no significant difference was found. These
findings indicate that each paradigm can provide advantages depending on the task. We hypothesize
that loops help with step-by-step reasoning, while functional design reduces mutable state and
therefore simplifies bug identification in code that would otherwise be heavily stateful.

Some questions showed a strong preference for one approach over the other. For example, I1 and
I2 in Quiz 1 showed large differences in favor of the imperative approach, and many participants
stated that fold() and other iterator-based approaches were unintuitive. M2 from Quiz 1 showed
a strong preference for the functional approach, and participants noted that it is problematic for
some variables to be mutable in the imperative version. Furthermore, participants performed very
closely for both paradigms of I6 in Quiz 1, suggesting neither approach was far better than the
other, reflecting the difficulties in designing “one-size-fits-all” guidelines for idiomatic use.

Preferences and opinions. From participant responses, we can glean some information on why
some questions leaned towards one paradigm or another. Many reviewers explicitly stated that
imperative loops were easier to follow for multi-step computations, while functional iterators could
seem “too clever” for simpler tasks. Pattern matching was seen as more idiomatic than chained
conditionals, and participants preferred functional approaches that eliminated the mutable state.
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Iterator Method Readability vs. Actual Use. We noticed a discrepancy between longer times to do
code review on iterator methods and use in areas where correctness is essential. If iterator methods
are potentially less readable than looping logic, then there is concern for whether programmers’
perception of the code they or others have written with iterator methods is correct. Especially for
methods such as fold, where the name of the method is not as intuitive as that of reverse, there
is an objective for programmers to learn and memorize these methods or avoid using obscure ones.

Mutating Functions and Ownership. The minimal difference between concentrations of non-
mutating functions across different computing domains may demonstrate that regardless of context,
the presence of mutating functions does not have as much of an impact on perceptions of correctness
as we originally hypothesized. Perhaps Rust’s ownership model alleviates programmers’ concerns
of mutability across function boundaries by guaranteeing memory safety.

On the other hand, we observed from the sample of solo projects that the average percentage of
non-mutating functions was significantly higher than in the popular codebases. If solo projects are
more likely to be novice Rust programmers, this could be explained by a preference to copy data
rather than take an explicit mutable reference to avoid dealing with ownership rules [8].

Essential Functional Features. There are certain functional language features in Rust that appear
to be essential to writing clear and concise Rust. Most of our code review quiz participants in the
imperative groups for pattern matching suggested implementing it over if/else. With similar
concentrations in real codebases (22.9% of popular codebases and 25.9% of solo), functions with
pattern matching make up close to a quarter of Rust programs. This data reinforces the claim that
pattern matching is an idiomatic practice in Rust.

5 LIMITATIONS
While our study offers insights into Rust code review and programming practices, there are several
limitations that should be considered when interpreting the results.

Participant Sample Bias. Because of the small sample size and dependency on volunteer sampling,
our participant pool may be skewed toward self-motivated learners or language enthusiasts rather
than an unbiased sample of all professional Rust developers. However, because of Rust’s relatively
nascent standing, self-motivated learners may be overrepresented in the Rust population in general
compared to the general developer community. A future, larger Rust community may be different.

Code Snippet Generalizability. The code review tasks were intentionally simple and short to make
the review process feasible in a short amount of time. As a result, our results may not generalize
to complex code located in large, real-world Rust databases. However, they may serve as a good
proxy, since our experiment concerns the differences between conditions and not absolute times.

Time-Based Measurement. Review tasks are not representative of all tasks that programmers
undertake; they may be particularly different from authoring tasks. Also, review time relates to
comprehension speed, but the relationship may be confounded by other factors. More experienced
developers may spend more time reviewing to give a more comprehensive response, while less
experienced developers may speed through the quiz as they have far less feedback. However,
participants were randomly assigned to the functional and imperative categories so any variation
in experience should be evenly distributed across groups.

Compilation Success Rate. A portion of the cloned repos failed to compile in both the popular
and solo codebases—20.6% and 49.4% respectively. The most frequently failing contexts of popular
codebases are Databases (26/84 failed) and Blockchain libraries (21/44 failed) which mainly rely on
external dependencies that could not be installed from Rust’s package manager, cargo. For solo
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codebases, there is likely less of a requirement for reproducibility and stable commits, hence the
higher compilation error rate.

6 RELATEDWORK
Code Quality and Review Studies. The importance of high-quality code in the efficiency of software

development is well established [3, 5, 42], with details such as variable naming [14], structural
regularity [22], and usage of types [18, 29] all affecting programmer productivity. Many quantitative
code quality studies have focused on showing a relationship between implementation choices and
programmer efficacy as measured by task completion times or task correctness rates [13]. Stamelos
et al. [40] took another approach by relating properties of software to user satisfaction, finding that
average function size of an application was negatively correlated with end-user satisfaction ratings.

Bacchelli et al. [1] interviewed, surveyed, and analyzed code reviews by programmers atMicrosoft.
While motivations for performing code review lie in finding defects and code improvement, code
review comments frequently emphasize style and architecture. However, a separate study found
that code that is committed without review is more than twice as likely to contain defects [2].
Jahncke [21] studied how code review quality was affected by cyclomatic complexity of the reviewed
code snippet. Missed defects and frustration were positively correlated with higher complexity, but
limitations due to the environment (such as lack of pressure) may impact the applicability of the
results in a realistic code review setting.

Empirical Studies of Language Usage. Several other studies conduct static analysis to detect
language features among open-source codebases. Dyer et al. [12] designed a language, Boa, and
used it to analyze the ASTs of 31k Java projects to understand adoption and frequency of use of
language features. They demonstrate the adoption curve and eventual saturation of new feature
use over several years by measuring whether or not a feature appears in a particular file, and found
the adoption of new features to be limited, suggesting the design of recommendation systems to
suggest refactoring code to use these new features to prevent bugs.

For Python, Peng et al. [31] developed PYSCAN to recognize language features and analyzed why
certain features were used among 35 popular Python projects. Looking at feature usage normalized
by the number of functions in a project, they discovered that several safety features were rarely
used and that projects from different domains use different features. Dong et al. [11] studied 1.3M
general Bash scripts and 14k top Github-starred Bash scripts to find common language features and
bugs. They found that feature use between the general and top-starred scripts was similar, while
80% of the general and 50% of the top-starred scripts contained code smells.

Paradigm Studies. Historically, quantitative experiments regarding programming language design
have been scarce [23]. However, comparative studies between imperative, functional, and multi-
paradigm languages give insight into the benefits and downsides of each paradigm in the context
of different languages.

Poos et al. found that ownership and explicit declarations of mutability in Rust help programmers
find the location of an erroneous side effect compared to Java [32]. The challenges of finding the
source of incorrect side effects correspond with the preference our participants expressed to avoid
mutation when possible. However, it is possible that usage of mutation could be less impactful in
Rust than in other languages due to Rust’s ownership and mutation rules and that our participants
are biased due to their experience with other languages.

Pankratius et al. [30] compared Scala, a multi-paradigm language, with Java, a primarily impera-
tive language, in a randomized, counterbalanced, within-subjects study of four-week projects. They
found that while Scala programs were more concise, the average debugging time was double that of
Java. However, the results were influenced by their participant demographics: students with high
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levels of expertise in Java but novice experience in Scala. Mirolo et al. [27] compared the difficulty
of tasks involving the reversibility of conditional statements in Java and Scheme among students
who had novice experience in both languages. Explicit else branching in the functional language,
Scheme, resulted in higher accuracy and comprehension of the tasks compared to implicit else
(with no body) in the imperative condition.

Within multi-paradigm languages, Uesbeck et al. [41] studied the impact of lambdas in C++.
They did not find a difference regarding time spent programming, compiler errors, or ability to
complete tasks across all experience levels. Floor [15] conducted code comprehension interviews
in the multi-paradigm language Kotlin, and found that multi-paradigm programs become less
comprehensible when the boundary between the functional and imperative side is unclear. In
addition, they identified that professionals struggled more than student participants on programs
that were not purely imperative.

Additional Rust Studies. Rust research such as Crichton et al.’s [9] conceptual model for ownership
measured the effectiveness of their additions to the Rust textbook via open-ended questions targeting
ownership misconceptions. Through A/B testing, they found that their intervention made a positive,
statistically significant difference in the percent of correct quiz answers by participants.
Empirical Rust studies like Yu et al. [44] focused on language features that relate to bugs in

the Rust programming language itself. They analyzed 10k bug reports to find the majority arise
from data types, expressions, and assignment statements, while Rust-specific features such as traits
and ownership account for relatively fewer bug reports. On functional vs. imperative language
features in particular, Xu [43] found that 10 of the top 15 frequently used features of scientific Rust
programs are functional, demonstrating that Rust’s functional features are commonly used even
outside of software engineering contexts.

7 FUTUREWORK AND CONCLUSION
Our empirical study provides useful evidence that programmers can use when writing software:
generally, use iteration rather than functional approaches; avoid mutation; use pattern matching.
These results also show the promise of using code reviews as a tool for comparing language designs
and stylistic choices; compared with other approaches, code reviews may be more representative
of a real-world task that requires participants to thoroughly understand code.

Each programming language design encompasses hundreds of different decisions. Code review-
based empirical methods represent a promising approach that could enable gathering data on how
relevant design decisions could affect readers of code. As LLM-based programming becomes more
prevalent, programmers’ time may focus more on reading tasks and even less on writing tasks,
making code review an even better proxy for general software engineering work.

8 DATA AVAILABILITY
We provide a replication package that contains data from both the code review study and empirical
paradigm analysis. We have made the questions for code review Quiz 1 and 2 publicly available. The
quiz responses contain personally identifiable information so they could not be included. However,
we have made the analysis scripts available.

We alsomake the datasets collected fromAwesome Rust repositories and solo-dev Rust repositories
available, with both the output of compiling with cargo salt in addition to the commit hashes and
version numbers of each project at which point the salt plugin was run. The raw plugin binary,
salt-ide, is included for conducting new analyses with installation and use instructions.
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