
MARKINGPrepared by LLNL under Contract DE-AC52-07NA27344.

Example poster: 48 in x 36 in

Figure 1. State machine for SPI Master with transition conditions and output.
Variables are identified by (i)nput, (o)utput, and internal (s)ignals.

Introducing Russet: Hardware Formal Verification with Mealy Machines
Molly MacLaren (LLNL, Carnegie Mellon University), Edwin Westbrook (LLNL), Matthew Sottile (LLNL)

Russet is a Haskell implementation of Mealy machines as a way of formally representing and reasoning about circuits. We introduce the Spud DSL
to formally define circuit requirements and state transitions, and we demonstrate its effectiveness by verifying the main component of SPI.

INTRODUCTION
What is hardware verification? Why is it necessary?
• To validate hardware behavior, simulation with a testbench is

common but not feasible to scale over every possible test case.

• Formal verification uses rigorous mathematical reasoning to show
that a design meets a specification in every possible state.

• This approach is important for critical systems, where failure can
have severe consequences.

What is Russet? How does it compare to other verifiers?
• Russet enables hardware engineers to define their spec as a Mealy

machine, a type of finite state machine where state transitions
depend on both the current state and current input and is commonly
used in hardware design. [3]

• Russet applies Constrained Horn clause (CHC) solvers to encode
circuit behavior and verification conditions to automatically compute
constraint satisfaction.

• CHCs have found use across frameworks for software verification,
but have not yet gained popularity in hardware verification. [2]

Research Question
Can we design a formal verification tool for practical use by
hardware engineers and demonstrate that it is more effective than
testing?

METHODS
Designing Russet
• Russet is written in Haskell, a purely functional programming

language known for its strong type system, which helps to avoid
mutation and runtime bugs common in imperative languages.

• Russet also defines a new language, Spud, to formally represent
circuit specifications via finite state machines.

• Spud allows programmers to define states in a circuit, guarded
transitions between those states, and correctness properties of the
circuit outputs to be verified.

RESULTS

Future work
• Optimizing the CHC query, such as re-ordering correctness

properties from most to least complex (e.g. by number of bits
involved) can help speed up verification time.

• Supporting more components to be interpreted by Russet such as
RAM and asynchronous flip-flops would increase the variety of
circuits that can be verified.

• Implementing proof modularity, or the ability to use other proven
circuits as sub-modules for larger proofs, would be useful to quickly
verify multiple components of SPI together after verifying them
independently.

[1] By User:Cburnett - File:SPI_timing_diagram.svg, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=134782980

[2] Gurfinkel, A. (2022, August). Program verification with constrained horn clauses. In International
Conference on Computer Aided Verification (pp. 19-29). Cham: Springer Intl Publishing.

[3] Pedroni, V. A. (2013). Finite state machines in hardware: theory and design (with VHDL and
SystemVerilog). MIT press.

GENERATE

NETLIST
VHDL

init s1

true

rst

!rst

SPUDFILE VERIFY ORTRANSLATE
CHC

QUERY

Figure 2. How Russet works with inputs in blue and outputs in orange. The hardware design is
generated by Yosys, which is interpreted with the Spud specs and translated to a CHC query
with Russet, and finally verified with the Z3 prover using Spacer.

Figure 3. SPI timing diagram for both clock polarities and phases. Data bits output on blue
lines if CPHA=0, or on red lines if CPHA=1, and sample on opposite-colored lines. [1]

Verifying Open-Source Hardware: the SPI Protocol
• Serial Peripheral Interface (SPI) is a design standard for

synchronous serial communication between integrated circuits.

• We focus on the “master” component, which orchestrates
communication with one or more peripherals, such as sensors.

• Verification strategy:

1. Design a Mealy machine for the circuit based on intended
behavior (see Fig 1).

2. Incrementally construct the Spudfile, verifying the least
complex signals first to ensure the number and order of states
align with the implementation.

3. Verify the most complex signals last: received and transmitted
data. Start with 1-bit length and build up to longer messages.

4. Demonstrate that Russet can also find bugs by manually inserting
a fault into the circuit to show that Russet will generate a trace
that exhibits that fault. The bug: if all clock input, transmitted,
and received bits are 1, flip all received bits to 0.

INIT

RX

when (i: en = ‘1’):
o: sclk = cpol
s: cnt = 0
s: tx_buf = tx
s: cpha_s = cpha

when (s: cnt < len):
o: mosi = tx_buf(len-1) <MSB>
s: tx_buf = tx_buf(len-2 to 0) + ‘0’
o: sclk = !sclk,

TX

when (true):
s: rx_buffer = rx_buffer + miso
s: cnt = cnt + 1
o: sclk = !sclk

when (i: en = ‘0’):
o: ss_n = ‘1’

when (s: cnt = len
and s: cpha_s = ‘0’):
o: sclk = !sclk

when (s: cpha_s = ‘0’):
o: ss = ‘0’
o: mosi = tx_buf(len-1) <MSB>
s: tx_buf = tx_buf(len-2 to 0) + ‘0’

C1_WAIT

when (s: cpha_s = ‘1’):
o: ss = ‘0’

C0_WAIT

when (true):
o: ss = ‘1’
o: rx = rx_buf

when (s: cnt = len
and s: cpha_s = ‘1’):
o: ss = ‘1’
o: rx = rx_buf

Message Length (bits) 1 2 3

Time to Verify 49m 3hr 8m 8hr 25min

Time to Counter (bug ver.) 1hr 23m 7hr 19m 13hr 5min

Table 1. Time taken to compute constraint satisfaction on an M2 Mac with 32GB RAM

Beyond Traditional Testing!
• Russet ensures SPI meets the Spud specs at every state possible.

• Russet can also generate a counterexample trace for a bug that at
worst case, would require 1024 (24*2+2) test cases for 4 bit messages
and 262,144 (28*2+2) test cases for 8 bits to have the same coverage!

LLNL-POST-2009382

	Slide 1

